Natural Health Science News The latest news and top resources on natural health.

Alzheimer’s/Brain Aging – Alternative Therapies – Update

Posted May 1, 2017

Molecular Mechanisms and Therapeutic Effects of (-)-Epicatechin and Other Polyphenols in Cancer, Inflammation, Diabetes, and Neurodegeneration.

Shay, J., H. A. Elbaz, I. Lee, S. P. Zielske, M. H. Malek, and M. Huttemann. “Molecular Mechanisms and Therapeutic Effects of (-)-Epicatechin and Other Polyphenols in Cancer, Inflammation, Diabetes, and Neurodegeneration.” [In eng]. Oxid Med Cell Longev 2015 (2015): 181260.

Neuroprotective effects of a polyphenolic white grape juice extract in a mouse model of experimental autoimmune encephalomyelitis.

Giacoppo, S., M. Galuppo, G. E. Lombardo, M. M. Ulaszewska, F. Mattivi, P. Bramanti, E. Mazzon, and M. Navarra. “Neuroprotective Effects of a Polyphenolic White Grape Juice Extract in a Mouse Model of Experimental Autoimmune Encephalomyelitis.” [In eng]. Fitoterapia 103 (Jun 2015): 171-86.

Green tea catechins potentiate the neuritogenic action of brain-derived neurotrophic factor: Role of 67-kDa laminin receptor and hydrogen peroxide.

Gundimeda, U., T. H. McNeill, T. K. Fan, R. Deng, D. Rayudu, Z. Chen, E. Cadenas, and R. Gopalakrishna. “Green Tea Catechins Potentiate the Neuritogenic Action of Brain-Derived Neurotrophic Factor: Role of 67-Kda Laminin Receptor and Hydrogen Peroxide.” [In eng]. Biochem Biophys Res Commun 445, no. 1 (Feb 28 2014): 218-24.

Phytochemicals Mediated Remediation of Neurotoxicity Induced by Heavy Metals.

Gupta, V. K., S. Singh, A. Agrawal, N. J. Siddiqi, and B. Sharma. “Phytochemicals Mediated Remediation of Neurotoxicity Induced by Heavy Metals.” [In eng]. Biochem Res Int 2015 (2015): 534769.

Neuroprotective effects of neolignans isolated from Magnoliae Cortex against glutamate-induced apoptotic stimuli in HT22 cells.

Yang, E. J., J. Y. Lee, S. H. Park, T. Lee, and K. S. Song. “Neuroprotective Effects of Neolignans Isolated from Magnoliae Cortex against Glutamate-Induced Apoptotic Stimuli in Ht22 Cells.” [In eng]. Food Chem Toxicol 56 (Jun 2013): 304-12.

Inhibitory Activity Of Curcumin Derivatives Towards Metal-free And Metal-induced Amyloid-o Aggregation.

Kochi, A., H. J. Lee, S. M. Vithanarachchi, V. Padmini, M. J. Allen, and M. H. Lim. “Inhibitory Activity of Curcumin Derivatives Towards Metal-Free and Metal-Induced Amyloid-Beta Aggregation.” [In eng]. Curr Alzheimer Res 12, no. 5 (2015): 415-23.

The targets of curcumin.

Zhou, H., C. S. Beevers, and S. Huang. “The Targets of Curcumin.” [In eng]. Curr Drug Targets 12, no. 3 (Mar 01 2011): 332-47.

Curcumin suppresses N-methyl-N-nitrosourea-induced photoreceptor apoptosis in Sprague-Dawley rats.

Emoto, Y., K. Yoshizawa, N. Uehara, Y. Kinoshita, T. Yuri, N. Shikata, and A. Tsubura. “Curcumin Suppresses N-Methyl-N-Nitrosourea-Induced Photoreceptor Apoptosis in Sprague-Dawley Rats.” [In eng]. In Vivo 27, no. 5 (Sep-Oct 2013): 583-90.

Iron-chelating, free radical scavenging and anti-proliferative activities of Azadirachta indica.

Pangjit, K., P. Tantiphaipunwong, W. Sajjapong, and S. Srichairatanakool. “Iron-Chelating, Free Radical Scavenging and Anti-Proliferative Activities of Azadirachta Indica.” [In eng]. J Med Assoc Thai 97 Suppl 4 (Apr 2014): S36-43.

NP04634 prevents cell damage caused by calcium overload and mitochondrial disruption in bovine chromaffin cells.

Valero, T., L. del Barrio, J. Egea, N. Canas, A. Martinez, A. G. Garcia, M. Villarroya, and M. G. Lopez. “Np04634 Prevents Cell Damage Caused by Calcium Overload and Mitochondrial Disruption in Bovine Chromaffin Cells.” [In eng]. Eur J Pharmacol 607, no. 1-3 (Apr 01 2009): 47-53.

Ginsenoside Rd and ischemic stroke; a short review of literatures.

Nabavi, S. F., A. Sureda, S. Habtemariam, and S. M. Nabavi. “Ginsenoside Rd and Ischemic Stroke; a Short Review of Literatures.” [In eng]. J Ginseng Res 39, no. 4 (Oct 2015): 299-303.

Natural triterpenes modulate immune-inflammatory markers of experimental autoimmune encephalomyelitis: therapeutic implications for multiple sclerosis.

Martin, R., M. Hernandez, C. Cordova, and M. L. Nieto. “Natural Triterpenes Modulate Immune-Inflammatory Markers of Experimental Autoimmune Encephalomyelitis: Therapeutic Implications for Multiple Sclerosis.” [In eng]. Br J Pharmacol 166, no. 5 (Jul 2012): 1708-23.

Spiralisones A-D: acylphloroglucinol hemiketals from an Australian marine brown alga, Zonaria spiralis.

Zhang, H., X. Xiao, M. M. Conte, Z. Khalil, and R. J. Capon. “Spiralisones a-D: Acylphloroglucinol Hemiketals from an Australian Marine Brown Alga, Zonaria Spiralis.” [In eng]. Org Biomol Chem 10, no. 48 (Dec 28 2012): 9671-6.

Resveratrol prevents cadmium activation of Erk1/2 and JNK pathways from neuronal cell death via protein phosphatases 2A and 5.

Liu, C., R. Zhang, C. Sun, H. Zhang, C. Xu, W. Liu, W. Gao, S. Huang, and L. Chen. “Resveratrol Prevents Cadmium Activation of Erk1/2 and Jnk Pathways from Neuronal Cell Death Via Protein Phosphatases 2a and 5.” [In eng]. J Neurochem 135, no. 3 (Nov 2015): 466-78.

Imaging Induction of Cytoprotective Enzymes in Intact Human Cells: Coumberone, a Metabolic Reporter for Human AKR1C Enzymes Reveals Activation by Panaxytriol, an Active Component of Red Ginseng.

Halim, M., D. J. Yee, and D. Sames. “Imaging Induction of Cytoprotective Enzymes in Intact Human Cells: Coumberone, a Metabolic Reporter for Human Akr1c Enzymes Reveals Activation by Panaxytriol, an Active Component of Red Ginseng.” [In eng]. J Am Chem Soc 130, no. 43 (Oct 29 2008): 14123-8.

Hitting the golden TORget: curcumin’s effects on mTOR signaling.

Beevers, C. S., H. Zhou, and S. Huang. “Hitting the Golden Torget: Curcumin’s Effects on Mtor Signaling.” [In eng]. Anticancer Agents Med Chem 13, no. 7 (Sep 2013): 988-94.

Protective Effect of a (Poly)phenol-Rich Extract Derived from Sweet Cherries Culls against Oxidative Cell Damage.

Matias, A. A., R. Rosado-Ramos, S. L. Nunes, I. Figueira, A. T. Serra, M. R. Bronze, C. N. Santos, and C. M. Duarte. “Protective Effect of a (Poly)Phenol-Rich Extract Derived from Sweet Cherries Culls against Oxidative Cell Damage.” [In eng]. Molecules 21, no. 4 (Mar 24 2016): 406.

An In Vitro System Comprising Immortalized Hypothalamic Neuronal Cells (GT1-7 Cells) for Evaluation of the Neuroendocrine Effects of Essential Oils.

Mizuno, D., K. Konoha-Mizuno, M. Mori, K. Yamazaki, T. Haneda, H. Koyama, and M. Kawahara. “An in Vitro System Comprising Immortalized Hypothalamic Neuronal Cells (Gt1-7 Cells) for Evaluation of the Neuroendocrine Effects of Essential Oils.” [In eng]. Evid Based Complement Alternat Med 2015 (2015): 343942.

Obtaining from grape pomace an enzymatic extract with anti-inflammatory properties.

Rodriguez-Morgado, B., M. Candiracci, C. Santa-Maria, E. Revilla, B. Gordillo, J. Parrado, and A. Castano. “Obtaining from Grape Pomace an Enzymatic Extract with Anti-Inflammatory Properties.” [In eng]. Plant Foods Hum Nutr 70, no. 1 (Mar 2015): 42-9.

Omega-3 polyunsaturated fatty acids improve mitochondrial dysfunction in brain aging – Impact of Bcl-2 and NPD-1 like metabolites.

Afshordel, S., S. Hagl, D. Werner, N. Rohner, D. Kogel, N. G. Bazan, and G. P. Eckert. “Omega-3 Polyunsaturated Fatty Acids Improve Mitochondrial Dysfunction in Brain Aging–Impact of Bcl-2 and Npd-1 Like Metabolites.” [In eng]. Prostaglandins Leukot Essent Fatty Acids 92 (Jan 2015): 23-31.

Management of agitation and aggression associated with Alzheimer disease.

Ballard, C. G., S. Gauthier, J. L. Cummings, H. Brodaty, G. T. Grossberg, P. Robert, and C. G. Lyketsos. “Management of Agitation and Aggression Associated with Alzheimer Disease.” [In eng]. Nat Rev Neurol 5, no. 5 (May 2009): 245-55.

Blueberry Supplementation Attenuates Microglial Activation in Hippocampal Intraocular Grafts to Aged Hosts.

Willis, L. M., L. Freeman, P. C. Bickford, E. M. Quintero, C. D. Umphlet, A. B. Moore, L. Goetzl, and A. C. Granholm. “Blueberry Supplementation Attenuates Microglial Activation in Hippocampal Intraocular Grafts to Aged Hosts.” [In eng]. Glia 58, no. 6 (Apr 15 2010): 679-90.

Azaphilones inhibit tau aggregation and dissolve tau aggregates in vitro.

Paranjape, S. R., A. P. Riley, A. D. Somoza, C. E. Oakley, C. C. Wang, T. E. Prisinzano, B. R. Oakley, and T. C. Gamblin. “Azaphilones Inhibit Tau Aggregation and Dissolve Tau Aggregates in Vitro.” [In eng]. ACS Chem Neurosci 6, no. 5 (May 20 2015): 751-60.

Analysis of electrocorticographic patterns in rats fed standard or hyperlipidic diets in a normal state or during status epilepticus.

Pessoa, D., R. Cruz, B. Machado, B. Tenorio, and R. Nogueira. “Analysis of Electrocorticographic Patterns in Rats Fed Standard or Hyperlipidic Diets in a Normal State or During Status Epilepticus.” [In eng]. Nutr Neurosci 19, no. 5 (Jun 2016): 206-12.

Library-based Discovery of DYRK1A/CLK1 Inhibitors from Natural Product Extracts.

Grabher, P., E. Durieu, E. Kouloura, M. Halabalaki, L. A. Skaltsounis, L. Meijer, M. Hamburger, and O. Potterat. “Library-Based Discovery of Dyrk1a/Clk1 Inhibitors from Natural Product Extracts.” [In eng]. Planta Med 78, no. 10 (Jun 2012): 951-6.